Nonlinear maps preserving Jordan *-products
نویسندگان
چکیده
منابع مشابه
On strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملAdditive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملAdditivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملLinear maps preserving the idempotency of Jordan products of operators
Let B(X ) be the algebra of all bounded linear operators on a complex Banach space X and let I(X ) be the set of non-zero idempotent operators in B(X ). A surjective map φ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for every pair A, B ∈ B(X ), the relation AB +BA ∈ I(X ) implies φ(A)φ(B)+φ(B)φ(A) ∈ I(X ). In this paper, the structures of linear surj...
متن کاملMaps Preserving Peripheral Spectrum of Jordan Products of Operators
Let A and B be (not necessarily unital or closed) standard operator algebras on complex Banach spaces X and Y , respectively. For a bounded linear operator A on X, the peripheral spectrum σπ(A) of A is defined by σπ(A) = {z ∈ σ(A) : |z| = maxw∈σ(A) |w|}, where σ(A) denotes the spectrum of A. Assume that Φ : A → B is a map and the range of Φ contains all operators with rank at most two. It is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.07.019